2013年度センター試験 工業数理基礎

第3問

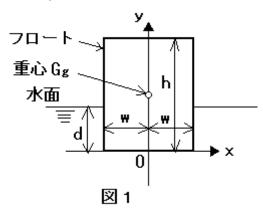
直方体の形状をしたフロート(浮き)の横転に対する安定性について考える。

形状:幅 2w [m]、高さ h [m]、奥行き 1 m.

密度: ρ [kg/ m^3]

重力加速度:g [m/ s^2]

また、フロート断面上の各点の位置を表すために、図のようにフロート断面上 に原点 0 をとり、x 軸と y 軸を定める。



問1 フロートが傾いていない場合について考える。フロートに作用する重力の大きさ $F_g[N]$ は $F_g=2wh\rho g$ と表される。また、水の密度を ρ_0 $[kg/m^3]$ $(\rho_0>\rho)$ 、フロートの沈下量を d[m] とする。

この時、フロートに作用する浮力は沈下したフロートの体積と同じ体積の水の重力の大きさに等しい。このため浮力は

$$F_f = (2w \times d \times 1) \times \rho_0 \times g = 2wd\rho_0 g$$

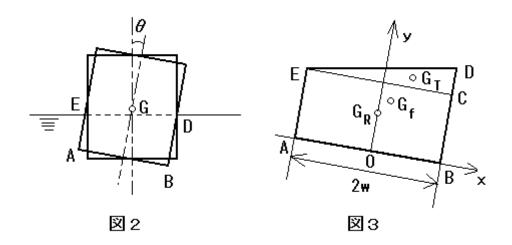
となる。

フロートが浮いているとき、フロートにかかる浮力と重力の大きさが等しい。 つまり、 $F_f=F_g$ が成り立つ。 よって d を h で表すと

$$2wd\rho_0 g = 2wh\rho g \Rightarrow d = \frac{\rho}{\rho_0} h$$

となる。

問 2 フロートが θ [rad] 傾き、水面下のフロート断面が台形 ABDE となる場合を考える。このとき浮力の作用点は台形 ABDE の図心になる。図心の座標を求める。



台形 ABDE の図心 $G_{\mathbf{f}}(x_{\mathbf{f}},y_{\mathbf{f}})$ は三角形 CDE の図心 $G_{\mathbf{T}}$ 、長方形 ABCE の図心 $G_{\mathbf{R}}$ 、各図形の面積から求めることができる。

三角形 CDE は $\angle CDE = \theta$, $\angle DCE = 90$ ° であるため、

$$CD = CE \times \tan \theta = 2w \tan \theta$$

次に線分 AE の長さを求める。台形 ABDE は問1 の状態で水が排除された領域の断面積 2wd と等しい。

三角形
$$CDE$$
 の面積= $2w \times CD \times \frac{1}{2} = 2w^2 \tan \theta$

長方形 ABCE の面積= $2w \times EA$ であるため、

$$2w^{2} \tan \theta + 2w \times EA = 2wd$$

$$\Rightarrow w \tan \theta + EA = d$$

$$\Rightarrow EA = d - w \tan \theta$$

となる。すなわち長方形 ABCE の面積は

$$2w \times (d - w \tan \theta) = 2w(d - w \tan \theta)$$

と表すことができる。

三角形 CDE の図心の x 座標は $(-w+w+w) \times \frac{1}{3} = \frac{1}{3}w$ 、y 座標は $\{(d-w\tan\theta)+(d-w\tan\theta)+(d+w\tan\theta)\} \times \frac{1}{3} = d-\frac{1}{3}w\tan\theta$ である。一方長方形 ABCE の x 座標は 0 、y 座標は

$$\frac{1}{2} \times EA = \frac{1}{2} (d - w \tan \theta)$$

である。

一方 軸周りのモーメントの釣り合いから以下の式が成り立つ。

(台形 ABDE の面積) \times (G_f から y 軸までの距離)

$$=$$
 (三角形 CDE の面積) $imes$ (G_T から y 軸までの距離)

$$+$$
 (長方形 $ABCE$ の面積) $imes$ $(G_R$ から y 軸までの距離)

台形 ABDE の面積は 2wd であるため、この関係式の左辺は $2wdx_{\mathbf{f}}$ 一方この関係式の右辺は

$$2w^2 \tan \theta \times \frac{1}{3}w + 2w(d - w \tan \theta) \times 0 = \frac{2}{3}w^3 \tan \theta$$

となる。以上から x_f を求めると

$$2wdx_{\rm f} = \frac{2}{3}w^3 \tan \theta \Rightarrow x_{\rm f} = \frac{w^2}{3d} \tan \theta$$

となる。

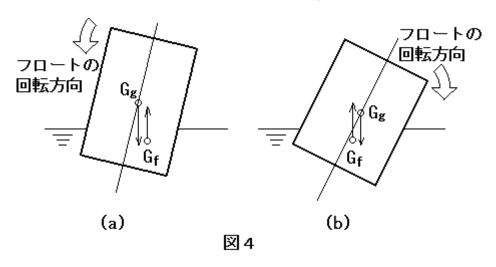
同様にして y_f を求める。

$$G_{
m f}$$
 から x 軸までの距離 $= y_{
m f}$ $G_{
m T}$ から x 軸までの距離 $= d - \frac{1}{3} w an heta$ $G_{
m R}$ から x 軸までの距離 $= \frac{1}{2} (d - w an heta)$

となるため、

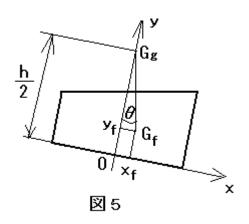
$$2wdy_{\mathrm{f}}=2w^2\tan\theta imes\left(d-rac{1}{3}w\tan\theta
ight)$$
 $+2w(d-w\tan\theta) imesrac{1}{2}(d-w\tan\theta)$ $=wd^2+rac{1}{3}w^3\tan^2\theta$ $\Rightarrow y_{\mathrm{f}}=rac{1}{2}d+rac{w^2}{6d}\tan^2\theta$ 以上から図心 G_{f} の座標は $\left(rac{w^2}{3d}\tan\theta,rac{1}{2}d+rac{w^2}{6d}\tan^2\theta
ight)$ に求まる。

安定性については、フロートの重心 G_g と浮力の作用点 G_f が図 A(a) のような関係にあるときは、傾きを減少させる方向に力が作用するため、フロートは安定となる。一方、図 A(b) のような関係にあるときは、傾きを増加させる方向に力が作用するため、フロートは不安定となる。



問 3 フロートが安定になる条件を数式で表すことを考える。図 4 の (a) の状態と (b) の状態が切り替わる限界の状態では、重力の作用する $G_{\mathbf{g}}$ と浮力の作用する $G_{\mathbf{f}}$ の位置が回転を打ち消し合う配置となる。

このとき $G_{\mathrm{f}}\left(x_{\mathrm{f}},\;y_{\mathrm{f}}
ight)$ と $G_{\mathrm{g}}\left(0,\,rac{h}{2}
ight)$ は図5のような関係になる。



この図において、色づけされた部分は直角三角形になる。 $\frac{h}{2}-y_{\mathrm{f}}$ と x_{f} の比を θ の三角比で表して整理すると

$$\frac{x_{\rm f}}{\frac{h}{2} - y_{\rm f}} = \tan \theta \implies \frac{1}{\tan \theta} x_{\rm f} + y_{\rm f} = \frac{h}{2}$$
 (1)

となる。

式(1)の左辺が右辺より大きいときつまり、

$$\frac{1}{\tan \theta} x_{\rm f} + y_{\rm f} > \frac{h}{2} \tag{2}$$

のときフロートが安定する。

この式 (2) に
$$x_f = \frac{w^2}{3d} \tan \theta$$
 , $y_f = \frac{1}{2} d + \frac{w^2}{6d} \tan^2 \theta$ を代入すると
$$\frac{1}{\tan \theta} \times \frac{w^2}{3d} \tan \theta + \left(\frac{1}{2} d + \frac{w^3}{6d} \tan^2 \theta\right) > \frac{h}{2}$$

$$\Rightarrow \qquad \frac{w^2}{3d} + \left(\frac{1}{2} d + \frac{w^3}{6d} \tan^2 \theta\right) > \frac{h}{2}$$

$$\Rightarrow \qquad 2w^2 + 3d^2 + w^2 \tan^2 \theta > 3hd$$

$$\Rightarrow \qquad 2w^2 - 3hd + 3d^2 + w^2 \tan^2 \theta > 0 \qquad (3)$$

この条件の使用例として、h=4m, $w=\sqrt{5}$ m, $\rho=\frac{1}{4}\rho_0$ の場合について考えてみよう。この場合、静止状態での沈下量 d の値は式(1)より、

$$d = \frac{\rho}{\rho_0} \times h = \frac{1}{4} \times 4 = 1 \text{ m}$$

となるため、この値を式(3)の左辺に代入すると

$$3 \times 1^{2} - 3 \times 4 \times 1 + 2 \times (\sqrt{5})^{2} + (\sqrt{5})^{2} \tan^{2} \theta$$

$$= 3 - 12 + 10 + 5 \tan^{2} \theta$$

$$= 1 + 5 \tan^{2} \theta$$

となる。 $0 < \theta < \pi/2$ で $\tan \theta > 0$ であるため、この値は常に正である。つまり式 (3) は成り立つため、このフロートは**安定になる**。

第3問 正解								
	ア	1	ウ	エ	オ	力	キ	ク
	1	5	4	1	1	2	1	0