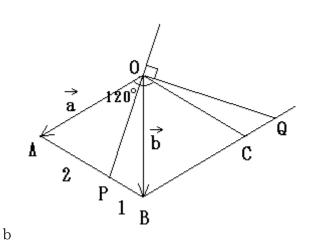
## 2015年度センター試験 数学旧2B

## 第4問

1辺の長さが 1 のひし形 OABC において、 $\angle AOC=120$ ° とする。辺 ABを 2:1 に内分する点を P とし、直線 BC 上に点 Q を  $\overrightarrow{OP} \perp \overrightarrow{OQ}$  となるようにとる。以下、 $\overrightarrow{OA}=\vec{a}$  ,  $\overrightarrow{OB}=\vec{b}$  とおく。


(2) 辺 BC を 1:3 に内分する点を R とし、直線 OR と直線 PQ との交点を T とする。 $\overrightarrow{OP}$  を  $\overrightarrow{a}$  と  $\overrightarrow{b}$  を用いて表し、三角形 OPQ と三角形 PRT の面積比を求めよう。

T は直線 OR 上の点であり、直線 PQ 上の点でもあるので、実数 r,s を用いて

$$\overrightarrow{OT} = r \overrightarrow{OR} = (1 - s) \overrightarrow{OP} + s \overrightarrow{OQ}$$

$$\overrightarrow{OT} =$$
  $\overrightarrow{S}$   $\overrightarrow{A}$   $\overrightarrow{$ 

上で求めた r ,s の値から、三角形 OPQ の面積  $S_1$  と、三角形 PRT の面積  $S_2$  との比は、 $S_1:S_2=$  へ木 : 2 である。



(1)  $AP : PB = 2 : 1 \ \ \, \downarrow \ \ \, )$ 

$$\overrightarrow{OP} = \frac{1}{3}\vec{a} + \frac{2}{3}\vec{b}$$

となる。 $\overrightarrow{OQ}$  は実数 t を用いて  $\overrightarrow{OQ}=(1-t)\overrightarrow{OB}+t\overrightarrow{OC}$  と表される。 $\overrightarrow{OC}=\overrightarrow{OB}-\overrightarrow{OA}$  より

$$\overrightarrow{OQ} = (1-t) \overrightarrow{OB} + t (\overrightarrow{OB} - \overrightarrow{OA}) = -t \vec{a} + \vec{b}$$

である。 $\angle AOB = 60$ °, OB = 1 より

$$\vec{a} \cdot \vec{b} = |\vec{a}| \times |\vec{b}| \times \cos \angle AOB = \frac{1}{2}$$

また、 $\overrightarrow{OP} \perp \overrightarrow{OQ}$  より  $\overrightarrow{OP} \cdot \overrightarrow{OQ} = \mathbf{0}$  である。つまり

$$\left(\frac{1}{3}\vec{a} + \frac{2}{3}\vec{b}\right) \cdot \left(-t\vec{a} + \vec{b}\right) = 0$$

となる。ここで、

となることから、 $t = \frac{5}{4}$  である。

これらのことから、 $\left|\overrightarrow{OP}\right|$  ,  $\left|\overrightarrow{OQ}\right|$  の値を求める。

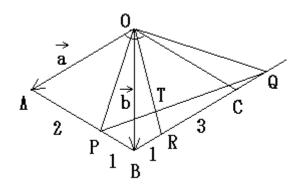
$$|\overrightarrow{OP}|^{2} = \left(\frac{1}{3}\vec{a} + \frac{2}{3}\vec{b}\right) \cdot \left(\frac{1}{3}\vec{a} + \frac{2}{3}\vec{b}\right)$$

$$= \frac{1}{9}|\vec{a}|^{2} + \frac{4}{9}|\vec{b}|^{2} + \frac{4}{9}\vec{a} \cdot \vec{b}$$

$$= \frac{7}{9}$$

$$\left|\overrightarrow{OQ}\right|^2 = \left(-\frac{5}{4}\vec{a} + \vec{b}\right) \cdot \left(-\frac{5}{4}\vec{a} + \vec{b}\right)$$

$$= \frac{25}{16} |\vec{a}|^2 + |\vec{b}|^2 - \frac{5}{2} \vec{a} \cdot \vec{b}$$
$$= \frac{21}{16}$$


より

$$\left| \overrightarrow{OP} \right| = \sqrt{\frac{7}{9}} = \frac{\sqrt{7}}{3}$$
,  $\left| \overrightarrow{OQ} \right| = \sqrt{\frac{21}{16}} = \frac{\sqrt{21}}{4}$ 

である。よって、三角形 OPQ の面積  $S_1$  は

$$S_1 = \frac{1}{2} \times \left| \overrightarrow{OP} \right| \times \left| \overrightarrow{OQ} \right| = \frac{7\sqrt{3}}{24}$$

(2)



辺 BC を 1:3 に内分する点を R とし、直線 OR と直線 PQ との交点を T とする。

$$\overrightarrow{OT} = r \ \overrightarrow{OR} = (1 - s) \ \overrightarrow{OP} + s \ \overrightarrow{OQ}$$

とする。BR:RC=1:3 より

$$\overrightarrow{OR} = \frac{3}{4} \overrightarrow{OB} + \frac{1}{4} \overrightarrow{OC} = \frac{3}{4} \overrightarrow{b} + \frac{1}{4} (\overrightarrow{b} - \overrightarrow{a}) = -\frac{1}{4} \overrightarrow{a} + \overrightarrow{b}$$

つまり、

$$\overrightarrow{OT} = -\frac{r}{4} \vec{a} + r \vec{b}$$

一方

$$\overrightarrow{OT} = (1 - s) \overrightarrow{OP} + s \overrightarrow{OQ}$$

$$= (1 - s) \left(\frac{1}{3}\vec{a} + \frac{2}{3}\vec{b}\right) + s\left(-\frac{5}{4}\vec{a} + \vec{b}\right)$$

$$= \left(\frac{1}{3} - \frac{19}{12}s\right)\vec{a} + \left(\frac{2}{3} + \frac{1}{3}s\right)\vec{b}$$

である。 $\vec{a}$ ,  $\vec{b}$  は一次独立であることから

$$-\frac{r}{4} = \frac{1}{3} - \frac{19}{12}s$$
,  $r = \frac{2}{3} + \frac{1}{3}s$ 

が成り立つ。この連立方程式を解くと、

$$r = \frac{7}{9} , \qquad s = \frac{1}{3}$$

となるため、

$$\overrightarrow{OT} = \frac{-7}{36} \vec{a} + \frac{7}{9} \vec{b}$$

上で求めた r ,s の値から、三角形 OPQ の面積  $S_1$  と、三角形 PRT の面積  $S_2$  との比を求める。

$$\overrightarrow{OT} = \frac{2}{3} \overrightarrow{OP} + \frac{1}{3} \overrightarrow{OQ}$$

より、

$$PT: TQ = 1:2 \implies OPQ: OPT = 3:1 = 21:7$$

一方

$$\overrightarrow{OT} = \frac{7}{9} \ \overrightarrow{OR}$$

より

 $OT:TR=7:2 \Rightarrow OPT:PRT=7:2$ 

以上から面積比は、 $S_1:S_2={f 21}:2$  である。

第4問の正解

| 21. 1.4 —/41 |    |   |          |    |   |    |
|--------------|----|---|----------|----|---|----|
| ア            | イ  | ウ | 工        | 才  | 力 | キ  |
| 1            | 3  | 2 | _        | 1  | 2 | 0  |
| ク            | ケ  | コ | サ        | シス | セ | ソ  |
| 5            | 4  | 7 | 3        | 21 | 4 | 7  |
| タ            | チツ | テ | <u>۲</u> | ナ  | 1 | ヌネ |
| 3            | 24 | 7 | 9        | 1  | 3 | -7 |
| ノハ           | ヒ  | フ | ヘホ       |    |   |    |
| 36           | 7  | 9 | 21       |    |   |    |