2015 年度センター試験 数学 2 B

第5問

次の表は、あるクラスの生徒 20 人に対して行われた英語と数学のテスト(各 50 点満点)の得点をまとめたものである。英語の得点を変量 x、数学の得点を変量 y で表し、x の平均値を \overline{x} 、y の平均値を \overline{y} で表す。ただし、テストの得点は整数値である。また、表の数値はすべて正確な値であり、四捨五入されていないものとする。

番号	x	у	$(x-\overline{x})^2$	$y - \overline{y}$	$(y-\overline{y})^2$	$(x-\overline{x})(y-\overline{y})$
1	42	18	81.0	1.0	1.0	9.0
2	49	16	256.0	-1.0	1.0	-16.0
3	44	23	121.0	6.0	36.0	66.0
:	•••	•••	:	•••	•••	:
18	39	18	36.0	1.0	1.0	6.0
19	30	10	9.0	-7.0	49.0	21.0
20	32	20	1.0	3.0	9.0	-3.0
合計	660	Α	2000.0	В	500.0	353.0

以下、小数の形で解答する場合、指定された桁数の一つ下の桁を四v捨五入し、解答せよ。途中で割り切れた場合、指定された桁まで①にマークすること。

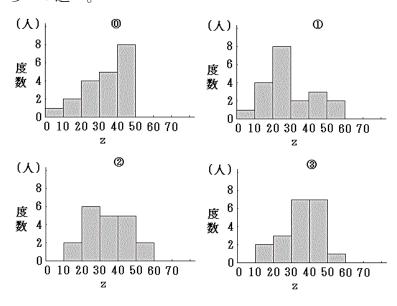
- (1) 変量 x の平均値 \overline{x} は $\boxed{ \mathbf{r} \mathbf{r} }$. $\boxed{ \mathbf{r} }$ 点である。
- (2) 変量 y の平均値 \overline{y} は x . y 点である。したがって、変量 y の合計 y の信は x の値は x である。また、合計 y の値は y の の信は y の の の の の の である。
- (3) 変量 x と変量 y の相関係数の値は $\boxed{\quad \mathbf{5}\quad \ }$. $\boxed{\quad \mathbf{7}$ スセソ $\boxed{\quad }$ である。

у	0 以上	10 以上	20 以上	30 以上	40 以上
\boldsymbol{x}	10 未満	20 未満	30 未満	40 未満	50 以下
0 以上 10 未満	0	0	0	0	0
10 以上 20 未満	1	1	1	0	0
20 以上 30 未満	0	С	1	0	0
30 以上 40 未満	0	D	4	0	0
40 以上 50 未満	1	3	2	0	0

(4) さらに、変量 x と変量 y の値をそれぞれ 10 ずつの区間に区切って、次の表を作成した。たとえば、変量 x の値が 30 以上 40 未満で変量 y の値が 20 以上 30 未満である度数は 4 である。

ここで、変量 x の値が 20 以上で変量 y の値が 10 以上である度数は 16 であり、変量 x の値が 30 未満で変量 y の値が 30 未満である度数は 8 である。このことから、表中の C の値は $\boxed{9}$ であり、 $\boxed{9}$ の値は $\boxed{9}$ であり、 $\boxed{9}$ の値は $\boxed{9}$ である。

(5) 新しい変量 w を w=x+50 により定める。このとき、変量 w の平均値は $\boxed{}$ である。



ここで、変量 x と変量 y の相関係数の値を r_1 、変量 z と変量 w の相関係数の値を r_2 とすると、E の関係がある。E に当てはまるものを、次の O ~ O のうちから一つ選べ。

①
$$r_2 = r_1/4$$
 ① $r_2 = r_1/2$ ② $r_2 = r_1$ ③ $r_2 = 2 r_1$ ③ $r_2 = 4 r_1$

番号 i の生徒の変量 x,y の値をそれぞれ x_i , y_i と表す。

(1) 変量 x の合計 $x_1 + x_2 + \cdots + x_{20}$ が 660 であることから、変量 x の 平均値 \overline{x} は

$$\overline{x} = \frac{660}{20} = 33.0$$

(2) 番号が1の生徒の変量 y の値と平均値 \overline{y} との差 $y_1-\overline{y}$ は 1.0 であることから、

$$\overline{y} = y_1 - 1.0 = 17.0$$

変量 y の合計 A は平均値に生徒の人数を掛けた値と等しいため、

$$A = 20 \times \overline{y} = 20 \times 17.0 = 340$$

B は変量 $y-\overline{y}$ の合計である。この合計は

$$(y_1 + y_2 + \dots + y_{20}) - \overline{y} \times 20$$

と表すことができる。これらの2つの値は等しいため $B=\mathbf{0.0}$ である。

(3) 相関係数は

$$\sum_{i=1}^{20} (x_i - \overline{x}) (y_i - \overline{y}) / \sqrt{\sum_{i=1}^{20} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{20} (y_i - \overline{y})^2}$$

と表すことができる。問題の1番目の表から該当する値を上の式に代入すると、 相関係数は

$$\frac{353}{\sqrt{2000} \times \sqrt{500}} = \frac{353}{1000} = \mathbf{0} .353$$

となる。

(4) 変量 x の値が 20 以上で変量 y の値が 10 以上である範囲は表の赤枠で囲まれた部分。変量 x の値が 30 未満で変量 y の値が 30 未満である範囲は表の青枠で囲まれた部分になる。このことから

$$\begin{cases} C + D + 10 = 16 \\ C + 4 = 8 \end{cases} \Rightarrow \begin{cases} C = 4 \\ D = 2 \end{cases}$$

у	0 以上	10 以上	20 以上	30 以上	40 以上
x	10 未満	20 未満	30 未満	40 未満	50 以下
0 以上 10 未満	0	0	0	0	0
10 以上 20 未満	1	1	1	0	0
20 以上 30 未満	0	С	1	0	0
30 以上 40 未満	0	D	4	0	0
40 以上 50 未満	1	3	2	0	0

(5) 新しい変量 w を w = x + 50 により定める。このとき、変量 w の平均値を求めると

$$\frac{1}{20}$$
 {($x_1 + 50$) + ($x_2 + 50$) + ··· + ($x_{20} + 50$)}

$$= \frac{1}{20}(x_1 + x_2 + \dots + x_{20}) + \frac{1}{20} \times 50 \times 20 = \overline{x} + 50 = 83.0$$

である。

次に、新しい変量 z を z=2y により定める。また、 $z_i=2y_i$ とする。このとき、変量 z の平均値 \overline{z} について

$$\overline{z} = \frac{1}{20} \times (2 y_1 + 2 y_2 + \dots + 2 y_{20}) = 2 \overline{y}$$

が成り立つ。このことから変量 Z の分散の値を求めると

$$\frac{1}{20} \times \{(z_1 - \overline{z})^2 + \dots + (z_{20} - \overline{z})^2\}$$

$$= \frac{1}{20} \times \{(2y_1 - 2\overline{y})^2 + \dots + (2y_{20} - 2\overline{y})^2\}$$

$$= 4 \times \frac{1}{20} \times \{(y_1 - \overline{y})^2 + \dots + (y_{20} - \overline{y})^2\}$$

$$= 4 \times \frac{1}{20} \times 500.0$$

$$= \mathbf{100.00}$$

となる。2番目の表から変量 Z に関する度数は以下の通りとなる。

z: 0 以上 20 未満	2
z: 20 以上 40 未満	10
z: 40 以上 60 未満	8

一方、選択肢のヒストグラム \bigcirc ~ \bigcirc より変量 Z に関する度数を求めると以下の通りになる。

	0	1	2	3
z: 0 以上 20 未満	3	5	2	2
z: 20 以上 40 未満	9	10	11	10
z: 40 以上 60 未満	8	5	7	8

よって、変量 z のヒストグラムとして、最も適切なものは表の度数と一致する ③ である。

ここで、変量 x と変量 y の相関係数の値を r_1 、変量 z と変量 w の相関係数の値を r_2 とする。このとき

$$w_i - \overline{w} = (x_i + 50) - (\overline{x} + 50) = x_i - \overline{x}$$

$$z_i - \overline{z} = 2 y_i - 2 \overline{y} = 2(y_i - \overline{y})$$

が成り立つ。このことから

$$\sum_{i=1}^{20} (w_i - \overline{w}) (z_i - \overline{z}) = 2 \sum_{i=1}^{20} (x_i - \overline{x}) (y_i - \overline{y})$$

$$\sqrt{\sum_{i=1}^{20} (w_i - \overline{w})^2} \sqrt{\sum_{i=1}^{20} (z_i - \overline{z})^2} = 2 \sqrt{\sum_{i=1}^{20} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{20} (y_i - \overline{y})^2}$$

となるため、二つの相関係数について ② $r_2=r_1$ が成り立つ。

第4間の正解

アイウ	エオカ	キクケ	コサ
33.0	17.0	340	0.0
シスセソ	タ	チ	ツテト
0.353	4	2	83.0
ナニヌネノ	ハ	ヒ	
100.00	3	2	