2018年度センター試験 数学2B解説

第3問

第4項が 30、初項から第8項までの和が 288 である等差数列を $\{a_n\}$ とし、 $\{a_n\}$ の初項から第8項までの和を S_n とする。また、第2項が 36、初項から第3項までの和が 156 である等比数列で公比が 1 より大きいものを $\{b_n\}$ とし、 $\{b_n\}$ の初項から第 n 項までの和を T_n とする。

(1) $\{a_n\}$ の初項と交差を求める。交差を d とすると

$$a_4 = a_1 + 3d,$$

 $a_1 + a_2 + \dots + a_8 = \frac{8}{2} \{a_1 + (a_1 + 7d)\} = 4(2a_1 + 7d)$

となる。上の条件から a_1 , d を求めると

$$\begin{cases} a_1 + 3d = 30 \\ 4(2a_1 + 7d) = 288 \end{cases} \Rightarrow \begin{cases} a_1 = -6 \\ d = 12 \end{cases}$$

となる。以上より、 $\{a_n\}$ の初項は $-\mathbf{6}$ 交差は $\mathbf{12}$ である。一般項は $a_n=-6+(n-1)\times 12=12\,n-18$ となることから

$$S_n = \frac{n}{2} \{-6 + (12 n - 18)\} = 6n^2 - 12n$$

である。

(2) $\{b_n\}$ の初項と交比を求める。交差を r とすると

$$b_2 = b_1 r,$$

$$b_1 + b_2 + b_3 = b_1 + b_1 r + b_1 r^2 = b_1 (1 + r + r^2)$$

となる。上の条件から b_1 , r を求めると

$$\begin{cases} b_1 r = 36 \\ b_1 (1 + r + r^2) = 156 \\ \Rightarrow 36(1 + r + r^2) = b_1 r(1 + r + r^2) = 156 r \\ \Rightarrow 3r^2 - 10r + 3 = (3r - 1)(r - 3) = 0 \\ \Rightarrow r = \frac{1}{3}, 3 \end{cases}$$

公比は 3 より大きいことから r=3、よって $b_1=36/r=12$ となる。以上より、 $\{b_n\}$ の初項は $\mathbf{12}$ 交差は $\mathbf{3}$ である。一般項は $b_n=12\cdot 3^{n-1}$ となることから

$$T_n = 12 \times \frac{3^n - 1}{2} = \mathbf{6}(3^n - 1)$$

である。

(3) 数列 $\{c_n\}$ を次のように定義する。

$$c_n = \sum_{k=1}^{n} (n - k + 1)(a_k - b_k)$$

$$= n(a_1 - b_1) + (n - 1)(a_2 - b_2) + \dots + 2(a_{n-1} - b_{n-1}) + (a_n - b_n)$$

$$(n = 1, 2, 3, \dots)$$

たとえば

$$c_1 = a_1 - b_1$$
, $c_2 = 2(a_1 - b_1) + (a_2 - b_2)$
 $c_3 = 3(a_1 - b_1) + 2(a_2 - b_2) + (a_3 - b_3)$

である。数列 $\{c_n\}$ の一般項を求めよう。

 $\{c_n\}$ の階差数列を $\{d_n\}$ とする。 $d_n=c_{n+1}-c_n$ であるから、

$$c_{n+1} = (n+1)(a_1 - b_1) + n(a_2 - b_2) + \dots + 2(a_n - b_n) + (a_{n+1} - b_{n+1})$$

$$c_n = n(a_1 - b_1) + (n-1)(a_2 - b_2) + \dots + (a_n - b_n)$$

$$\Rightarrow c_{n+1} - c_n = (a_1 - b_1) + (a_2 - b_2) + \dots + (a_n - b_n) + (a_{n+1} - b_{n+1})$$
$$= (a_1 + a_2 + \dots + a_n + a_{n+1}) - (b_1 + b_2 + \dots + b_n + b_{n+1})$$

つまり

$$d_n = S_{n+1} - T_{n+1}$$

を満たす。したがって、(1)と(2)により

$$d_n = 6(n+1)^2 - 12(n+1) - 6(3^{n+1} - 1)$$

= $6 n^2 - 6 \cdot 3^{n+1}$
= $6 n^2 - 2 \cdot 3^{n+2}$

ここで、

$$c_1 = a_1 - b_1 = -6 - 12 = -18$$

であるから、

$$c_n = c_1 + \sum_{k=1}^{n-1} d_k$$

$$= -18 + \sum_{k=1}^{n-1} (6 k^2 - 2 \cdot 3^{k+2})$$

$$= -18 + 6 \sum_{k=1}^{n-1} k^2 - 2 \cdot 3^3 \sum_{k=1}^{n-1} 3^{k-1}$$

$$= -18 + n(n-1)(2n-1) - 2 \cdot 3^3 \cdot \frac{3^{n-1} - 1}{2}$$

$$= 2n^3 - 3n^2 + n + 9 - 3^{n+2}$$

となる。

第4問の正解

アイ	ウエ	オ	カキ	クケ
-6	12	6	12	12
コ	サ	シ	ス	セ
3	6	3	1	5
ソ	タ	チ	ツテト	ナ
6	3	2	-18	2
=	ヌ	ネ		
3	9	2		